
configobj Documentation
Release 5.0.6

Michael Foord, Nicola Larosa, Rob Dennis, Eli Courtwright

Jan 18, 2023

Contents

1 Reading and Writing Config Files 3

2 Validation Schema with validate.py 49

3 Indices and tables 61

i

ii

configobj Documentation, Release 5.0.6

Contents:

Contents 1

configobj Documentation, Release 5.0.6

2 Contents

CHAPTER 1

Reading and Writing Config Files

1.1 ConfigObj 5 Introduction and Reference

Authors Michael Foord, Nicola Larosa, Rob Dennis, Eli Courtwright

Version ConfigObj 5.0.7

Date 2023/01/17

PyPI Entry ConfigObj on PyPI

Homepage Github Page

License BSD License

Support Mailing List

ConfigObj Manual

• Reading and Writing Config Files

– ConfigObj 5 Introduction and Reference

* Introduction

* Downloading

· Development Version

* ConfigObj in the Real World

* Getting Started

· Reading a Config File

· Writing a Config File

· Config Files

3

http://pypi.python.org/pypi/configobj/
https://github.com/DiffSK/configobj
http://opensource.org/licenses/BSD-3-Clause
http://lists.sourceforge.net/lists/listinfo/configobj-develop

configobj Documentation, Release 5.0.6

* ConfigObj specifications

· Methods

· write

· validate

· Return Value

· Mentioning Default Values

· Mentioning Repeated Sections and Values

· Mentioning SimpleVal

· Mentioning copy Mode

· reload

· reset

· Attributes

· interpolation

· stringify

· BOM

· initial_comment

· final_comment

· list_values

· encoding

· default_encoding

· unrepr

· write_empty_values

· newlines

* The Config File Format

* Sections

· Section Attributes

· Section Methods

· Walking a Section

· Examples

* Exceptions

* Validation

· configspec

· Type Conversion

· Default Values

· List Values

4 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

· Repeated Sections

· Repeated Values

· Copy Mode

· Validation and Interpolation

· Extra Values

· SimpleVal

* Empty values

* unrepr mode

* String Interpolation

· String Interpolation and List Values

* Comments

* flatten_errors

· Example Usage

* get_extra_values

· Example Usage

* CREDITS

* LICENSE

* TODO

* ISSUES

* CHANGELOG

· 2023/01/18 - Version 5.0.8

· 2023/01/17 - Version 5.0.7

· 2014/08/25 - Version 5.0.6

· 2014/04/28 - Version 5.0.5

· 2014/04/11 - Version 5.0.4

· 2014/04/04 - Version 5.0.3

· 2014/02/27 - Version 5.0.2

· 2014/02/19 - Version 5.0.1

· 2014/02/08 - Version 5.0.0

· 2010/02/27 - Version 4.7.2

· 2010/02/06 - Version 4.7.1

· 2010/01/09 - Version 4.7.0

· 2009/04/13 - Version 4.6.0

· 2008/06/27 - Version 4.5.3

· 2008/02/05 - Version 4.5.2

1.1. ConfigObj 5 Introduction and Reference 5

configobj Documentation, Release 5.0.6

· 2008/02/05 - Version 4.5.1

· 2008/02/05 - Version 4.5.0

· 2007/02/04 - Version 4.4.0

· 2006/12/17 - Version 4.3.3-alpha4

· 2006/12/17 - Version 4.3.3-alpha3

· 2006/12/09 - Version 4.3.3-alpha2

· 2006/12/09 - Version 4.3.3-alpha1

· 2006/06/04 - Version 4.3.2

· 2006/04/29 - Version 4.3.1

· 2006/03/24 - Version 4.3.0

· 2006/02/16 - Version 4.2.0

· 2005/12/14 - Version 4.1.0

· 2005/12/02 - Version 4.0.2

· 2005/11/05 - Version 4.0.1

· 2005/10/17 - Version 4.0.0

· 2005/09/09 - Version 4.0.0 beta 5

· 2005/09/07 - Version 4.0.0 beta 4

· 2005/08/28 - Version 4.0.0 beta 3

· 2005/08/25 - Version 4.0.0 beta 2

· 2005/08/21 - Version 4.0.0 beta 1

· 2004/05/24 - Version 3.0.0

· 2004/03/14 - Version 2.0.0 beta

· 2004/01/29 - Version 1.0.5

· Origins

* Footnotes

Note: The best introduction to working with ConfigObj, including the powerful configuration validation system, is
the article:

• An Introduction to ConfigObj

1.1.1 Introduction

ConfigObj is a simple but powerful config file reader and writer: an ini file round tripper. Its main feature is that it
is very easy to use, with a straightforward programmer’s interface and a simple syntax for config files. It has lots of
other features though :

• Nested sections (subsections), to any level

• List values

6 Chapter 1. Reading and Writing Config Files

https://web.archive.org/web/20200503085339/http://www.voidspace.org.uk/python/articles/configobj.shtml

configobj Documentation, Release 5.0.6

• Multiple line values

• String interpolation (substitution)

• Integrated with a powerful validation system

– including automatic type checking/conversion

– repeated sections

– and allowing default values

• When writing out config files, ConfigObj preserves all comments and the order of members and sections

• Many useful methods and options for working with configuration files (like the ‘reload’ method)

• Full Unicode support

For support and bug reports please use the ConfigObj Github Page.

1.1.2 Downloading

The current version is 5.0.7, dated January 2023. ConfigObj 5 is stable and mature. We still expect to pick up a few
bugs along the way though, particularly with respect to Python 3 compatibility1.

We recommend downloading and installing using pip:

pip install configobj

Development Version

It’s possible to get the latest development version of ConfigObj from the Git Repository maintained on the Github
Page.

1.1.3 ConfigObj in the Real World

ConfigObj is widely used. Projects using it include:

• Bazaar.

Bazaar is a Python distributed {acro;VCS;Version Control System}. ConfigObj is used to read
bazaar.conf and branches.conf.

• Chandler

A Python and wxPython Personal Information Manager, being developed by the OSAFoundation.

• matplotlib

A 2D plotting library.

• IPython

IPython is an enhanced interactive Python shell. IPython uses ConfigObj in a module called ‘TCon-
fig’ that combines it with enthought Traits: tconfig.

• Elisa - the Fluendo Mediacenter

Elisa is an open source cross-platform media center solution designed to be simple for people not
particularly familiar with computers.

1 And if you discover any bugs, let us know. We’ll fix them quickly.

1.1. ConfigObj 5 Introduction and Reference 7

https://github.com/DiffSK/configobj
https://github.com/DiffSK/configobj
https://github.com/DiffSK/configobj
http://bazaar-ng.org
http://chandler.osafoundation.org/
http://www.wxpython.org
http://www.osafoundation.org/
http://matplotlib.sourceforge.net/
http://ipython.scipy.org/moin/
http://code.enthought.com/traits/
http://ipython.scipy.org/ipython/ipython/browser/ipython/branches/saw/sandbox/tconfig
http://elisa.fluendo.com/

configobj Documentation, Release 5.0.6

1.1.4 Getting Started

The outstanding feature of using ConfigObj is simplicity. Most functions can be performed with single line commands.

Reading a Config File

The normal way to read a config file, is to give ConfigObj the filename :

from configobj import ConfigObj
config = ConfigObj(filename)

You can also pass the config file in as a list of lines, or a StringIO instance, so it doesn’t matter where your config
data comes from.

You can then access members of your config file as a dictionary. Subsections will also be dictionaries.

from configobj import ConfigObj
config = ConfigObj(filename)
#
value1 = config['keyword1']
value2 = config['keyword2']
#
section1 = config['section1']
value3 = section1['keyword3']
value4 = section1['keyword4']
#
you could also write
value3 = config['section1']['keyword3']
value4 = config['section1']['keyword4']

Writing a Config File

Creating a new config file is just as easy as reading one. You can specify a filename when you create the ConfigObj,
or do it later2.

If you don’t set a filename, then the write method will return a list of lines instead of writing to file. See the write
method for more details.

Here we show creating an empty ConfigObj, setting a filename and some values, and then writing to file :

from configobj import ConfigObj
config = ConfigObj()
config.filename = filename
#
config['keyword1'] = value1
config['keyword2'] = value2
#
config['section1'] = {}
config['section1']['keyword3'] = value3
config['section1']['keyword4'] = value4
#
section2 = {

'keyword5': value5,
'keyword6': value6,

(continues on next page)

2 If you specify a filename that doesn’t exist, ConfigObj will assume you are creating a new one. See the create_empty and file_error options.

8 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

(continued from previous page)

'sub-section': {
'keyword7': value7
}

}
config['section2'] = section2
#
config['section3'] = {}
config['section3']['keyword 8'] = [value8, value9, value10]
config['section3']['keyword 9'] = [value11, value12, value13]
#
config.write()

Caution: Keywords and section names can only be strings3. Attempting to set anything else will raise a
ValueError.

See String Interpolation and List Values for an important note on using lists in combination with String Interpola-
tion.

Config Files

The config files that ConfigObj will read and write are based on the ‘INI’ format. This means it will read and write
files created for ConfigParser4.

Keywords and values are separated by an '=', and section markers are between square brackets. Keywords, values,
and section names can be surrounded by single or double quotes. Indentation is not significant, but can be preserved.

Subsections are indicated by repeating the square brackets in the section marker. You nest levels by using more
brackets.

You can have list values by separating items with a comma, and values spanning multiple lines by using triple quotes
(single or double).

For full details on all these see the config file format. Here’s an example to illustrate:

This is the 'initial_comment'
Which may be several lines
keyword1 = value1
'keyword 2' = 'value 2'

["section 1"]
This comment goes with keyword 3
keyword 3 = value 3
'keyword 4' = value4, value 5, 'value 6'

[[sub-section]] # an inline comment
sub-section is inside "section 1"
'keyword 5' = 'value 7'
'keyword 6' = '''A multiline value,

that spans more than one line :-)
The line breaks are included in the value.'''

[[[sub-sub-section]]]

(continues on next page)

3 They can be byte strings (ordinary strings) or Unicode.
4 Except we don’t support the RFC822 style line continuations, nor ‘:’ as a divider.

1.1. ConfigObj 5 Introduction and Reference 9

configobj Documentation, Release 5.0.6

(continued from previous page)

sub-sub-section is *in* 'sub-section'
which is in 'section 1'
'keyword 7' = 'value 8'

[section 2] # an inline comment
keyword8 = "value 9"
keyword9 = value10 # an inline comment
The 'final_comment'
Which also may be several lines

1.1.5 ConfigObj specifications

config = ConfigObj(infile=None, options=None, configspec=None, encoding=None,
interpolation=True, raise_errors=False, list_values=True,
create_empty=False, file_error=False, stringify=True,
indent_type=None, default_encoding=None, unrepr=False,
write_empty_values=False, _inspec=False)

Many of the keyword arguments are available as attributes after the config file has been parsed.

Note: New in ConfigObj 4.7.0: Instantiating ConfigObj with an options dictionary is now deprecated. To modify
code that used to do this simply unpack the dictionary in the constructor call:

config = ConfigObj(filename, **options)

ConfigObj takes the following arguments (with the default values shown) :

• infile: None

You don’t need to specify an infile. If you omit it, an empty ConfigObj will be created. infile can
be :

– Nothing. In which case the filename attribute of your ConfigObj will be None. You can set
a filename at any time.

– A filename. What happens if the file doesn’t already exist is determined by the options
file_error and create_empty. The filename will be preserved as the filename at-
tribute. This can be changed at any time.

– A list of lines. Any trailing newlines will be removed from the lines. The filename attribute
of your ConfigObj will be None.

– A StringIO instance or file object, or any object with a read method. The filename
attribute of your ConfigObj will be None5.

– A dictionary. You can initialise a ConfigObj from a dictionary6. The filename attribute of
your ConfigObj will be None. All keys must be strings. In this case, the order of values and
sections is arbitrary.

5 This is a change in ConfigObj 4.2.0. Note that ConfigObj doesn’t call the seek method of any file like object you pass in. You may want to call
file_object.seek(0) yourself, first.

6 A side effect of this is that it enables you to copy a ConfigObj :

only copies members
not attributes/comments
config2 = ConfigObj(config1)

Since ConfigObj 4.7.0 the order of members and sections will be preserved when copying a ConfigObj instance.

10 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

• ‘raise_errors’: False

When parsing, it is possible that the config file will be badly formed. The default is to parse the
whole file and raise a single error at the end. You can set raise_errors = True to have errors
raised immediately. See the exceptions section for more details.

Altering this value after initial parsing has no effect.

• ‘list_values’: True

If True (the default) then list values are possible. If False, the values are not parsed for lists.

If list_values = False then single line values are not quoted or unquoted when reading and
writing.

Changing this value affects whether single line values will be quoted or not when writing.

• ‘create_empty’: False

If this value is True and the file specified by infile doesn’t exist, ConfigObj will create an empty
file. This can be a useful test that the filename makes sense: an impossible filename will cause an
error.

Altering this value after initial parsing has no effect.

• ‘file_error’: False

If this value is True and the file specified by infile doesn’t exist, ConfigObj will raise an
IOError. This error will be raised whenever an attempt to load the infile occurs, either in
the constructor or using the reload method.

• ‘interpolation’: True

Whether string interpolation is switched on or not. It is on (True) by default.

You can set this attribute to change whether string interpolation is done when values are fetched. See
the String Interpolation section for more details.

New in ConfigObj 4.7.0: Interpolation will also be done in list values.

• ‘configspec’: None

If you want to use the validation system, you supply a configspec. This is effectively a type of config
file that specifies a check for each member. This check can be used to do type conversion as well as
check that the value is within your required parameters.

You provide a configspec in the same way as you do the initial file: a filename, or list of lines, etc.
See the validation section for full details on how to use the system.

When parsed, every section has a configspec with a dictionary of configspec checks for that
section.

• ‘stringify’: True

If you use the validation scheme, it can do type checking and conversion for you. This means you
may want to set members to integers, or other non-string values.

If ‘stringify’ is set to True (default) then non-string values will be converted to strings when you
write the config file. The validation process converts values from strings to the required type.

If ‘stringify’ is set to False, attempting to set a member to a non-string value7 will raise a
TypeError (no type conversion is done by validation).

• ‘indent_type’: ' '

7 Other than lists of strings.

1.1. ConfigObj 5 Introduction and Reference 11

configobj Documentation, Release 5.0.6

Indentation is not significant; it can however be present in the input and output config. Any combina-
tion of tabs and spaces may be used: the string will be repeated for each level of indentation. Typical
values are: '' (no indentation), ' ' (indentation with four spaces, the default), '\t' (indentation
with one tab).

If this option is not specified, and the ConfigObj is initialised with a dictionary, the indentation used
in the output is the default one, that is, four spaces.

If this option is not specified, and the ConfigObj is initialised with a list of lines or a file, the indenta-
tion used in the first indented line is selected and used in all output lines. If no input line is indented,
no output line will be either.

If this option is specified, the option value is used in the output config, overriding the type of inden-
tation in the input config (if any).

• ‘encoding’: None

By default ConfigObj does not decode the file/strings you pass it into Unicode8. If you want your
config file as Unicode (keys and members) you need to provide an encoding to decode the file with.
This encoding will also be used to encode the config file when writing.

You can change the encoding attribute at any time.

Any characters in your strings that can’t be encoded with the specified encoding will raise a
UnicodeEncodeError.

Note: UTF16 encoded files will automatically be detected and decoded, even if encoding is
None.

This is because it is a 16-bit encoding, and ConfigObj will mangle it (split characters on byte bound-
aries) if it parses it without decoding.

• ‘default_encoding’: None

When using the write method, ConfigObj uses the encoding attribute to encode the Unicode
strings. If any members (or keys) have been set as byte strings instead of Unicode, these must first
be decoded to Unicode before outputting in the specified encoding.

default_encoding, if specified, is the encoding used to decode byte strings in the ConfigObj
before writing. If this is None, then the Python default encoding (sys.defaultencoding -
usually ASCII) is used.

For most Western European users, a value of latin-1 is sensible.

default_encoding is only used if an encoding is specified.

Any characters in byte-strings that can’t be decoded using the default_encoding will raise a
UnicodeDecodeError.

• ‘unrepr’: False

The unrepr option reads and writes files in a different mode. This allows you to store and retrieve
the basic Python data-types using config files.

This uses Python syntax for lists and quoting. See unrepr mode for the full details.

• ‘write_empty_values’: False

If write_empty_values is True, empty strings are written as empty values. See Empty Values
for more details.

8 The exception is if it detects a UTF16 encoded file which it must decode before parsing.

12 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

• ‘_inspec’: False

Used internally by ConfigObj when parsing configspec files. If you are creating a ConfigObj instance
from a configspec file you must pass True for this argument as well as list_values=False.

Methods

The ConfigObj is a subclass of an object called Section, which is itself a subclass of dict, the builtin dictionary
type. This means it also has all the normal dictionary methods.

In addition, the following Section Methods may be useful :

• ‘restore_default’

• ‘restore_defaults’

• ‘walk’

• ‘merge’

• ‘dict’

• ‘as_bool’

• ‘as_float’

• ‘as_int’

• ‘as_list’

Read about Sections for details of all the methods.

Hint: The merge method of sections is a recursive update.

You can use this to merge sections, or even whole ConfigObjs, into each other.

You would typically use this to create a default ConfigObj and then merge in user settings. This way users only need
to specify values that are different from the default. You can use configspecs and validation to achieve the same thing
of course.

The public methods available on ConfigObj are :

• ‘write’

• ‘validate’

• ‘reset’

• ‘reload’

write

write(file_object=None)

This method writes the current ConfigObj and takes a single, optional argument9.

If you pass in a file like object to the write method, the config file will be written to this. (The only method of this
object that is used is its write method, so a StringIO instance, or any other file like object will work.)

9 The method signature shows that this method takes two arguments. The second is the section to be written. This is because the write method
is called recursively.

1.1. ConfigObj 5 Introduction and Reference 13

configobj Documentation, Release 5.0.6

Otherwise, the behaviour of this method depends on the filename attribute of the ConfigObj.

filename ConfigObj will write the configuration to the file specified.

None write returns a list of lines. (Not '\n' terminated)

First the ‘initial_comment’ is written, then the config file, followed by the ‘final_comment’. Comment lines and inline
comments are written with each key/value.

validate

validate(validator, preserve_errors=False, copy=False)

filename is the config file
filename2 is the configspec
(which could also be hardcoded into your program)
config = ConfigObj(filename, configspec=filename2)
#
from validate import Validator
val = Validator()
test = config.validate(val)
if test == True:

print 'Succeeded.'

The validate method uses the :validate: module to do the validation.

This method validates the ConfigObj against the configspec. By doing type conversion as well it can abstract away the
config file altogether and present the config data to your application (in the types it expects it to be).

If the configspec attribute of the ConfigObj is None, it raises a ValueError.

If the stringify attribute is set, this process will convert values to the type defined in the configspec.

The validate method uses checks specified in the configspec and defined in the Validator object. It is very easy to
extend.

The configspec looks like the config file, but instead of the value, you specify the check (and any default value). See
the validation section for details.

Hint: The system of configspecs can seem confusing at first, but is actually quite simple and powerful. The best
guide to them is this article on ConfigObj:

• An Introduction to ConfigObj

The copy parameter fills in missing values from the configspec (default values), without marking the values as de-
faults. It also causes comments to be copied from the configspec into the config file. This allows you to use a
configspec to create default config files. (Normally default values aren’t written out by the write method.)

As of ConfigObj 4.3.0 you can also pass in a ConfigObj instance as your configspec. This is especially useful if
you need to specify the encoding of your configspec file. When you read your configspec file, you must specify
list_values=False. If you need to support hashes inside the configspec values then you must also pass in
_inspec=True. This is because configspec files actually use a different syntax to config files and inline comment
support must be switched off to correctly read configspec files with hashes in the values.

from configobj import ConfigObj
configspec = ConfigObj(configspecfilename, encoding='UTF8',

(continues on next page)

14 Chapter 1. Reading and Writing Config Files

https://web.archive.org/web/20200503085339/http://www.voidspace.org.uk/python/articles/configobj.shtml

configobj Documentation, Release 5.0.6

(continued from previous page)

list_values=False, _inspec=True)
config = ConfigObj(filename, configspec=configspec)

Return Value

By default, the validate method either returns True (everything passed) or a dictionary of True / False representing
pass/fail. The dictionary follows the structure of the ConfigObj.

If a whole section passes then it is replaced with the value True. If a whole section fails, then it is replaced with the
value False.

If a value is missing, and there is no default in the check, then the check automatically fails.

The validate method takes an optional keyword argument preserve_errors. If you set this to True, instead
of getting False for failed checks you get the actual error object from the validate module. This usually contains
useful information about why the check failed.

See the flatten_errors function for how to turn your results dictionary into a useful list of error messages.

Even if preserve_errors is True, missing keys or sections will still be represented by a False in the results
dictionary.

Mentioning Default Values

In the check in your configspec, you can specify a default to be used - by using the default keyword. E.g.

key1 = integer(0, 30, default=15)
key2 = integer(default=15)
key3 = boolean(default=True)
key4 = option('Hello', 'Goodbye', 'Not Today', default='Not Today')

If the configspec check supplies a default and the value is missing in the config, then the default will be set in your
ConfigObj. (It is still passed to the Validator so that type conversion can be done: this means the default value
must still pass the check.)

ConfigObj keeps a record of which values come from defaults, using the defaults attribute of sections. Any key in
this list isn’t written out by the write method. If a key is set from outside (even to the same value) then it is removed
from the defaults list.

There is additionally a special case default value of None. If you set the default value to None and the value is
missing, the value will always be set to None. As the other checks don’t return None (unless you implement your
own that do), you can tell that this value came from a default value (and was missing from the config file). It allows
an easy way of implementing optional values. Simply check (and ignore) members that are set to None.

Note: If stringify is False then default=None returns '' instead of None. This is because setting a value to a
non-string raises an error if stringify is unset.

The default value can be a list. See List Values for the way to do this.

Writing invalid default values is a guaranteed way of confusing your users. Default values must pass the check.

1.1. ConfigObj 5 Introduction and Reference 15

configobj Documentation, Release 5.0.6

Mentioning Repeated Sections and Values

In the configspec it is possible to cause every sub-section in a section to be validated using the same configspec. You
do this with a section in the configspec called __many__. Every sub-section in that section has the __many__
configspec applied to it (without you having to explicitly name them in advance).

Your __many__ section can have nested subsections, which can also include __many__ type sections.

You can also specify that all values should be validated using the same configspec, by having a member with the
name __many__. If you want to use repeated values along with repeated sections then you can call one of them
___many___ (triple underscores).

Sections with repeated sections or values can also have specifically named sub-sections or values. The __many__
configspec will only be used to validate entries that don’t have an explicit configspec.

See Repeated Sections for examples.

Mentioning SimpleVal

If you just want to check if all members are present, then you can use the SimpleVal object that comes with
ConfigObj. It only fails members if they are missing.

Write a configspec that has all the members you want to check for, but set every section to ''.

val = SimpleVal()
test = config.validate(val)
if test is True:

print 'Succeeded.'

Mentioning copy Mode

As discussed in Mentioning Default Values, you can use a configspec to supply default values. These are marked in
the ConfigObj instance as defaults, and not written out by the write mode. This means that your users only need to
supply values that are different from the defaults.

This can be inconvenient if you do want to write out the default values, for example to write out a default config file.

If you set copy=True when you call validate, then no values are marked as defaults. In addition, all comments from
the configspec are copied into your ConfigObj instance. You can then call write to create your config file.

There is a limitation with this. In order to allow String Interpolation to work within configspecs, DEFAULT sections
are not processed by validation; even in copy mode.

reload

If a ConfigObj instance was loaded from the filesystem, then this method will reload it. It will also reuse any configspec
you supplied at instantiation (including reloading it from the filesystem if you passed it in as a filename).

If the ConfigObj does not have a filename attribute pointing to a file, then a ReloadError will be raised.

reset

This method takes no arguments and doesn’t return anything. It restores a ConfigObj instance to a freshly created
state.

16 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

Attributes

A ConfigObj has the following attributes :

• indent_type

• interpolation

• stringify

• BOM

• initial_comment

• final_comment

• list_values

• encoding

• default_encoding

• unrepr

• write_empty_values

• newlines

Note: This doesn’t include comments, inline_comments, defaults, or configspec. These are actually attributes of
Sections.

It also has the following attributes as a result of parsing. They correspond to options when the ConfigObj was created,
but changing them has no effect.

• raise_errors

• create_empty

• file_error

interpolation

ConfigObj can perform string interpolation in a similar way to ConfigParser. See the String Interpolation section
for full details.

If interpolation is set to False, then interpolation is not done when you fetch values.

stringify

If this attribute is set (True) then the validate method changes the values in the ConfigObj. These are turned back
into strings when write is called.

If stringify is unset (False) then attempting to set a value to a non string (or a list of strings) will raise a TypeError.

1.1. ConfigObj 5 Introduction and Reference 17

configobj Documentation, Release 5.0.6

BOM

If the initial config file started with the UTF8 Unicode signature (known slightly incorrectly as the BOM - Byte Order
Mark), or the UTF16 BOM, then this attribute is set to True. Otherwise it is False.

If it is set to True when write is called then, if encoding is set to None or to utf_8 (and variants) a UTF BOM
will be written.

For UTF16 encodings, a BOM is always written.

initial_comment

This is a list of lines. If the ConfigObj is created from an existing file, it will contain any lines of comments before the
start of the members.

If you create a new ConfigObj, this will be an empty list.

The write method puts these lines before it starts writing out the members.

final_comment

This is a list of lines. If the ConfigObj is created from an existing file, it will contain any lines of comments after the
last member.

If you create a new ConfigObj, this will be an empty list.

The write method puts these lines after it finishes writing out the members.

list_values

This attribute is True or False. If set to False then values are not parsed for list values. In addition single line
values are not unquoted.

This allows you to do your own parsing of values. It exists primarily to support the reading of the configspec - but has
other use cases.

For example you could use the LineParser from the listquote module to read values for nested lists.

Single line values aren’t quoted when writing - but multiline values are handled as normal.

Caution: Because values aren’t quoted, leading or trailing whitespace can be lost. This behaviour was changed in
version 4.0.1. Prior to this, single line values might have been quoted; even with list_values=False. This
means that files written by earlier versions of ConfigObj could now be incompatible and need the quotes removing
by hand.

encoding

This is the encoding used to encode the output, when you call write. It must be a valid encoding recognised by
Python.

If this value is None then no encoding is done when write is called.

18 Chapter 1. Reading and Writing Config Files

http://www.voidspace.org.uk/python/listquote.html#lineparser
http://docs.python.org/lib/standard-encodings.html
http://docs.python.org/lib/standard-encodings.html

configobj Documentation, Release 5.0.6

default_encoding

If encoding is set, any byte-strings in your ConfigObj instance (keys or members) will first be decoded to Unicode
using the encoding specified by the default_encoding attribute. This ensures that the output is in the encoding
specified.

If this value is None then sys.defaultencoding is used instead.

unrepr

Another boolean value. If this is set, then repr(value) is used to write values. This writes values in a slightly
different way to the normal ConfigObj file syntax.

This preserves basic Python data-types when read back in. See unrepr mode for more details.

write_empty_values

Also boolean. If set, values that are an empty string ('') are written as empty values. See Empty Values for more
details.

newlines

When a config file is read, ConfigObj records the type of newline separators in the file and uses this separator when
writing. It defaults to None, and ConfigObj uses the system default (os.linesep) if write is called without newlines
having been set.

1.1.6 The Config File Format

You saw an example config file in the Config Files section. Here is a fuller specification of the config files used and
created by ConfigObj.

The basic pattern for keywords is:

comment line
comment line
keyword = value # inline comment

Both keyword and value can optionally be surrounded in quotes. The equals sign is the only valid divider.

Values can have comments on the lines above them, and an inline comment after them. This, of course, is optional.
See the comments section for details.

If a keyword or value starts or ends with whitespace, or contains a quote mark or comma, then it should be surrounded
by quotes. Quotes are not necessary if whitespace is surrounded by non-whitespace.

Values can also be lists. Lists are comma separated. You indicate a single member list by a trailing comma. An empty
list is shown by a single comma:

keyword1 = value1, value2, value3
keyword2 = value1, # a single member list
keyword3 = , # an empty list

Values that contain line breaks (multi-line values) can be surrounded by triple quotes. These can also be used if a value
contains both types of quotes. List members cannot be surrounded by triple quotes:

1.1. ConfigObj 5 Introduction and Reference 19

configobj Documentation, Release 5.0.6

keyword1 = ''' A multi line value
on several
lines''' # with a comment
keyword2 = '''I won't be "afraid".'''
#
keyword3 = """ A multi line value
on several
lines""" # with a comment
keyword4 = """I won't be "afraid"."""

Warning: There is no way of safely quoting values that contain both types of triple quotes.

A line that starts with a ‘#’, possibly preceded by whitespace, is a comment.

New sections are indicated by a section marker line. That is the section name in square brackets. Whitespace around
the section name is ignored. The name can be quoted with single or double quotes. The marker can have comments
before it and an inline comment after it:

The First Section
[section name 1] # first section
keyword1 = value1

The Second Section
["section name 2"] # second section
keyword2 = value2

Any subsections (sections that are inside the current section) are designated by repeating the square brackets before
and after the section name. The number of square brackets represents the nesting level of the sub-section. Square
brackets may be separated by whitespace; such whitespace, however, will not be present in the output config written
by the write method.

Indentation is not significant, but can be preserved. See the description of the indent_type option, in the ConfigObj
specifications chapter, for the details.

A NestingError will be raised if the number of the opening and the closing brackets in a section marker is not the
same, or if a sub-section’s nesting level is greater than the nesting level of it parent plus one.

In the outer section, single values can only appear before any sub-section. Otherwise they will belong to the sub-section
immediately before them:

initial comment
keyword1 = value1
keyword2 = value2

[section 1]
keyword1 = value1
keyword2 = value2

[[sub-section]]
this is in section 1
keyword1 = value1
keyword2 = value2

[[[nested section]]]
this is in sub section
keyword1 = value1

(continues on next page)

20 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

(continued from previous page)

keyword2 = value2

[[sub-section2]]
this is in section 1 again
keyword1 = value1
keyword2 = value2

[[sub-section3]]
this is also in section 1, indentation is misleading here
keyword1 = value1
keyword2 = value2

final comment

When parsed, the above config file produces the following data structure:

ConfigObj({
'keyword1': 'value1',
'keyword2': 'value2',
'section 1': {

'keyword1': 'value1',
'keyword2': 'value2',
'sub-section': {

'keyword1': 'value1',
'keyword2': 'value2',
'nested section': {

'keyword1': 'value1',
'keyword2': 'value2',

},
},
'sub-section2': {

'keyword1': 'value1',
'keyword2': 'value2',

},
'sub-section3': {

'keyword1': 'value1',
'keyword2': 'value2',

},
},

})

Sections are ordered: note how the structure of the resulting ConfigObj is in the same order as the original file.

Note: In ConfigObj 4.3.0 empty values became valid syntax. They are read as the empty string. There is also an
option/attribute (write_empty_values) to allow the writing of these.

This is mainly to support ‘legacy’ config files, written from other applications. This is documented under Empty
Values.

unrepr mode introduces another syntax variation, used for storing basic Python datatypes in config files.

1.1.7 Sections

Every section in a ConfigObj has certain properties. The ConfigObj itself also has these properties, because it too is a
section (sometimes called the root section).

1.1. ConfigObj 5 Introduction and Reference 21

configobj Documentation, Release 5.0.6

Section is a subclass of the standard new-class dictionary, therefore it has all the methods of a normal dictionary.
This means you can update and clear sections.

Note: You create a new section by assigning a member to be a dictionary.

The new Section is created from the dictionary, but isn’t the same thing as the dictionary. (So references to the
dictionary you use to create the section aren’t references to the new section).

Note the following.

config = ConfigObj()
vals = {'key1': 'value 1',

'key2': 'value 2'
}

config['vals'] = vals
config['vals'] == vals
True
config['vals'] is vals
False

If you now change vals, the changes won’t be reflected in config['vals'].

A section is ordered, following its scalars and sections attributes documented below. This means that the
following dictionary attributes return their results in order.

• ‘__iter__’

More commonly known as for member in section:.

• ‘__repr__’ and ‘__str__’

Any time you print or display the ConfigObj.

• ‘items’

• ‘iteritems’

• ‘iterkeys’

• ‘itervalues’

• ‘keys’

• ‘popitem’

• ‘values’

Section Attributes

• main

A reference to the main ConfigObj.

• parent

A reference to the ‘parent’ section, the section that this section is a member of.

On the ConfigObj this attribute is a reference to itself. You can use this to walk up the sections,
stopping when section.parent is section.

• depth

22 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

The nesting level of the current section.

If you create a new ConfigObj and add sections, 1 will be added to the depth level between sections.

• defaults

This attribute is a list of scalars that came from default values. Values that came from defaults aren’t
written out by the write method. Setting any of these values in the section removes them from the
defaults list.

• default_values

This attribute is a dictionary mapping keys to the default values for the keys. By default it is an empty
dictionary and is populated when you validate the ConfigObj.

• scalars, sections

These attributes are normal lists, representing the order that members, single values and subsections
appear in the section. The order will either be the order of the original config file, or the order that
you added members.

The order of members in this lists is the order that write creates in the config file. The scalars
list is output before the sections list.

Adding or removing members also alters these lists. You can manipulate the lists directly to alter the
order of members.

Warning: If you alter the scalars, sections, or defaults attributes so that they no
longer reflect the contents of the section, you will break your ConfigObj.

See also the rename method.

• comments

This is a dictionary of comments associated with each member. Each entry is a list of lines. These
lines are written out before the member.

• inline_comments

This is another dictionary of comments associated with each member. Each entry is a string that is
put inline with the member.

• configspec

The configspec attribute is a dictionary mapping scalars to checks. A check defines the expected type
and possibly the allowed values for a member.

The configspec has the same format as a config file, but instead of values it has a specification for
the value (which may include a default value). The validate method uses it to check the config file
makes sense. If a configspec is passed in when the ConfigObj is created, then it is parsed and broken
up to become the configspec attribute of each section.

If you didn’t pass in a configspec, this attribute will be None on the root section (the main Con-
figObj).

You can set the configspec attribute directly on a section.

See the validation section for full details of how to write configspecs.

• extra_values

1.1. ConfigObj 5 Introduction and Reference 23

configobj Documentation, Release 5.0.6

By default an empty list. After validation this is populated with any members of the section that don’t
appear in the configspec (i.e. they are additional values). Rather than accessing this directly it may
be more convenient to get all the extra values in a config file using the get_extra_values function.

New in ConfigObj 4.7.0.

Section Methods

• dict

This method takes no arguments. It returns a deep copy of the section as a dictionary. All subsections
will also be dictionaries, and list values will be copies, rather than references to the original10.

• rename

rename(oldkey, newkey)

This method renames a key, without affecting its position in the sequence.

• merge

merge(indict)

This method is a recursive update method. It allows you to merge two config files together.

You would typically use this to create a default ConfigObj and then merge in user settings. This way
users only need to specify values that are different from the default.

For example :

def_cfg contains your default config settings
user_cfg contains the user settings
cfg = ConfigObj(def_cfg)
usr = ConfigObj(user_cfg)
#
cfg.merge(usr)

"""
cfg now contains a combination of the default settings and the user
settings.

The user settings will have overwritten any of the default ones.
"""

• walk

This method can be used to transform values and names. See walking a section for examples and
explanation.

• as_bool

as_bool(key)

Returns True if the key contains a string that represents True, or is the True object.

Returns False if the key contains a string that represents False, or is the False object.

Raises a ValueError if the key contains anything else.

Strings that represent True are (not case sensitive):
10 The dict method doesn’t actually use the deepcopy mechanism. This means if you add nested lists (etc) to your ConfigObj, then the dictionary

returned by dict may contain some references. For all normal ConfigObjs it will return a deepcopy.

24 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

true, yes, on, 1

Strings that represent False are:

false, no, off, 0

• as_int

as_int(key)

This returns the value contained in the specified key as an integer.

It raises a ValueError if the conversion can’t be done.

• as_float

as_float(key)

This returns the value contained in the specified key as a float.

It raises a ValueError if the conversion can’t be done.

• as_list

as_list(key)

This returns the value contained in the specified key as a list.

If it isn’t a list it will be wrapped as a list so that you can guarantee the returned value will be a list.

• restore_default

restore_default(key)

Restore (and return) the default value for the specified key.

This method will only work for a ConfigObj that was created with a configspec and has been vali-
dated.

If there is no default value for this key, KeyError is raised.

• restore_defaults

restore_defaults()

Recursively restore default values to all members that have them.

This method will only work for a ConfigObj that was created with a configspec and has been vali-
dated.

It doesn’t delete or modify entries without default values.

Walking a Section

Note: The walk method allows you to call a function on every member/name.

walk(function, raise_errors=True,
call_on_sections=False, **keywargs)

1.1. ConfigObj 5 Introduction and Reference 25

configobj Documentation, Release 5.0.6

walk is a method of the Section object. This means it is also a method of ConfigObj.

It walks through every member and calls a function on the keyword and value. It walks recursively through subsections.

It returns a dictionary of all the computed values.

If the function raises an exception, the default is to propagate the error, and stop. If raise_errors=False then it
sets the return value for that keyword to False instead, and continues. This is similar to the way validation works.

Your function receives the arguments (section, key). The current value is then section[key]11. Any un-
recognised keyword arguments you pass to walk, are passed on to the function.

Normally walk just recurses into subsections. If you are transforming (or checking) names as well as values, then
you want to be able to change the names of sections. In this case set call_on_sections to True. Now, on
encountering a sub-section, first the function is called for the whole sub-section, and then it recurses into it’s members.
This means your function must be able to handle receiving dictionaries as well as strings and lists.

If you are using the return value from walk and call_on_sections, note that walk discards the return value
when it calls your function.

Caution: You can use walk to transform the names of members of a section but you mustn’t add or delete
members.

Examples

You can use this for transforming all values in your ConfigObj. For example you might like the nested lists
from ConfigObj 3. This was provided by the listquote_ module. You could switch off the parsing for list values
(list_values=False) and use listquote to parse every value.

Another thing you might want to do is use the Python escape codes in your values. You might be used to using \n
for line feed and \t for tab. Obviously we’d need to decode strings that come from the config file (using the escape
codes). Before writing out we’ll need to put the escape codes back in encode.

As an example we’ll write a function to use with walk, that encodes or decodes values using the string-escape
codec.

The function has to take each value and set the new value. As a bonus we’ll create one function that will do decode or
encode depending on a keyword argument.

We don’t want to work with section names, we’re only transforming values, so we can leave call_on_sections
as False. This means the two datatypes we have to handle are strings and lists, we can ignore everything else. (We’ll
treat tuples as lists as well).

We’re not using the return values, so it doesn’t need to return anything, just change the values if appropriate.

def string_escape(section, key, encode=False):
"""
A function to encode or decode using the 'string-escape' codec.
To be passed to the walk method of a ConfigObj.
By default it decodes.
To encode, pass in the keyword argument ``encode=True``.
"""
val = section[key]
is it a type we can work with
NOTE: for platforms where Python > 2.2

(continues on next page)

11 Passing (section, key) rather than (value, key) allows you to change the value by setting section[key] = newval. It also
gives you access to the rename method of the section.

26 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

(continued from previous page)

you can use basestring instead of (str, unicode)
if not isinstance(val, (str, unicode, list, tuple)):

no !
return

elif isinstance(val, (str, unicode)):
it's a string !
if not encode:

section[key] = val.decode('string-escape')
else:

section[key] = val.encode('string-escape')
else:

it must be a list or tuple!
we'll be lazy and create a new list
newval = []
we'll check every member of the list
for entry in val:

if isinstance(entry, (str, unicode)):
if not encode:

newval.append(entry.decode('string-escape'))
else:

newval.append(entry.encode('string-escape'))
else:

newval.append(entry)
done !
section[key] = newval

assume we have a ConfigObj called ``config``
#
To decode
config.walk(string_escape)
#
To encode.
Because ``walk`` doesn't recognise the ``encode`` argument
it passes it to our function.
config.walk(string_escape, encode=True)

Here’s a simple example of using walk to transform names and values. One usecase of this would be to create a
standard config file with placeholders for section and keynames. You can then use walk to create new config files and
change values and member names :

We use 'XXXX' as a placeholder
config = '''
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2
XXXXkey3 = XXXXvalue3
[XXXXsection1]
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2
XXXXkey3 = XXXXvalue3
[XXXXsection2]
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2
XXXXkey3 = XXXXvalue3

[[XXXXsection1]]
XXXXkey1 = XXXXvalue1
XXXXkey2 = XXXXvalue2

(continues on next page)

1.1. ConfigObj 5 Introduction and Reference 27

configobj Documentation, Release 5.0.6

(continued from previous page)

XXXXkey3 = XXXXvalue3
'''.splitlines()
cfg = ConfigObj(config)
#
def transform(section, key):

val = section[key]
newkey = key.replace('XXXX', 'CLIENT1')
section.rename(key, newkey)
if isinstance(val, (tuple, list, dict)):

pass
else:

val = val.replace('XXXX', 'CLIENT1')
section[newkey] = val

#
cfg.walk(transform, call_on_sections=True)
print cfg
ConfigObj({'CLIENT1key1': 'CLIENT1value1', 'CLIENT1key2': 'CLIENT1value2',
'CLIENT1key3': 'CLIENT1value3',
'CLIENT1section1': {'CLIENT1key1': 'CLIENT1value1',

'CLIENT1key2': 'CLIENT1value2', 'CLIENT1key3': 'CLIENT1value3'},
'CLIENT1section2': {'CLIENT1key1': 'CLIENT1value1',

'CLIENT1key2': 'CLIENT1value2', 'CLIENT1key3': 'CLIENT1value3',
'CLIENT1section1': {'CLIENT1key1': 'CLIENT1value1',

'CLIENT1key2': 'CLIENT1value2', 'CLIENT1key3': 'CLIENT1value3'}}})

1.1.8 Exceptions

There are several places where ConfigObj may raise exceptions (other than because of bugs).

1) If a configspec filename you pass in doesn’t exist, or a config file filename doesn’t exist and
file_error=True, an IOError will be raised.

2) If you try to set a non-string key, or a non string value when stringify=False, a TypeError will be
raised.

3) A badly built config file will cause parsing errors.

4) A parsing error can also occur when reading a configspec.

5) In string interpolation you can specify a value that doesn’t exist, or create circular references (recursion).

Number 5 (which is actually two different types of exceptions) is documented in String Interpolation.

This section is about errors raised during parsing.

The base error class is ConfigObjError. This is a subclass of SyntaxError, so you can trap for SyntaxError
without needing to directly import any of the ConfigObj exceptions.

The following other exceptions are defined (all deriving from ConfigObjError) :

• NestingError

This error indicates either a mismatch in the brackets in a section marker, or an excessive level of
nesting.

• ParseError

This error indicates that a line is badly written. It is neither a valid key = value line, nor a valid
section marker line, nor a comment line.

28 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

• DuplicateError

The keyword or section specified already exists.

• ConfigspecError

An error occurred whilst parsing a configspec.

• UnreprError

An error occurred when parsing a value in unrepr mode.

• ReloadError

reload was called on a ConfigObj instance that doesn’t have a valid filename attribute.

When parsing a configspec, ConfigObj will stop on the first error it encounters. It will raise a ConfigspecError.
This will have an error attribute, which is the actual error that was raised.

Behaviour when parsing a config file depends on the option raise_errors. If ConfigObj encounters an error while
parsing a config file:

If raise_errors=True then ConfigObj will raise the appropriate error and parsing will stop.

If raise_errors=False (the default) then parsing will continue to the end and all errors will be
collected.

If raise_errors is False and multiple errors are found a ConfigObjError is raised. The error raised has a
config attribute, which is the parts of the ConfigObj that parsed successfully. It also has an attribute errors,
which is a list of all the errors raised. Each entry in the list is an instance of the appropriate error type. Each one has
the following attributes (useful for delivering a sensible error message to your user) :

• line: the original line that caused the error.

• line_number: its number in the config file.

• message: the error message that accompanied the error.

If only one error is found, then that error is re-raised. The error still has the config and errors attributes. This
means that your error handling code can be the same whether one error is raised in parsing , or several.

It also means that in the most common case (a single error) a useful error message will be raised.

Note: One wrongly written line could break the basic structure of your config file. This could cause every line after
it to flag an error, so having a list of all the lines that caused errors may not be as useful as it sounds.

1.1.9 Validation

Hint: The system of configspecs can seem confusing at first, but is actually quite simple and powerful. The best
reference is my article on ConfigObj:

• An Introduction to ConfigObj

Validation is done through a combination of the configspec and a Validator object. For this you need validate.py12.
See downloading if you don’t have a copy.

Validation can perform two different operations :

12 Minimum required version of validate.py 0.2.0 .

1.1. ConfigObj 5 Introduction and Reference 29

https://web.archive.org/web/20200503085339/http://www.voidspace.org.uk/python/articles/configobj.shtml

configobj Documentation, Release 5.0.6

1) Check that a value meets a specification. For example, check that a value is an integer between one and
six, or is a choice from a specific set of options.

2) It can convert the value into the type required. For example, if one of your values is a port number, valida-
tion will turn it into an integer for you.

So validation can act as a transparent layer between the datatypes of your application configuration (boolean, integers,
floats, etc) and the text format of your config file.

configspec

The validate method checks members against an entry in the configspec. Your configspec therefore resembles
your config file, with a check for every member.

In order to perform validation you need a Validator object. This has several useful built-in check functions. You
can also create your own custom functions and register them with your Validator object.

Each check is the name of one of these functions, including any parameters and keyword arguments. The configspecs
look like function calls, and they map to function calls.

The basic datatypes that an un-extended Validator can test for are :

• boolean values (True and False)

• integers (including minimum and maximum values)

• floats (including min and max)

• strings (including min and max length)

• IP addresses (v4 only)

It can also handle lists of these types and restrict a value to being one from a set of options.

An example configspec is going to look something like:

port = integer(0, 100)
user = string(max=25)
mode = option('quiet', 'loud', 'silent')

You can specify default values, and also have the same configspec applied to several sections. This is called repeated
sections.

For full details on writing configspecs, please refer to the validate.py documentation.

Important: Your configspec is read by ConfigObj in the same way as a config file.

That means you can do interpolation within your configspec.

In order to allow this, checks in the ‘DEFAULT’ section (of the root level of your configspec) are not used.

If you want to use a configspec without interpolation being done in it you can create your configspec manually and
switch off interpolation:

from configobj import ConfigObj

configspec = ConfigObj(spec_filename, interpolation=False, list_values=False,
_inspec=True)

conf = ConfigObj(config_filename, configspec=configspec)

30 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

If you need to specify the encoding of your configspec, then you can pass in a ConfigObj instance as your configspec.
When you read your configspec file, you must specify list_values=False. If you need to support hashes in
configspec values then you must also pass in _inspec=True.

from configobj import ConfigObj
configspec = ConfigObj(configspecfilename, encoding='UTF8',

list_values=False, _inspec=True)
config = ConfigObj(filename, configspec=configspec)

Type Conversion

By default, validation does type conversion. This means that if you specify integer as the check, then calling
validate will actually change the value to an integer (so long as the check succeeds).

It also means that when you call the write method, the value will be converted back into a string using the str
function.

To switch this off, and leave values as strings after validation, you need to set the stringify attribute to False. If this
is the case, attempting to set a value to a non-string will raise an error.

Default Values

You can set a default value in your check. If the value is missing from the config file then this value will be used
instead. This means that your user only has to supply values that differ from the defaults.

If you don’t supply a default then for a value to be missing is an error, and this will show in the return value from
validate.

Additionally you can set the default to be None. This means the value will be set to None (the object) whichever
check is used. (It will be set to '' rather than None if stringify is False). You can use this to easily implement
optional values in your config files.

port = integer(0, 100, default=80)
user = string(max=25, default=0)
mode = option('quiet', 'loud', 'silent', default='loud')
nick = string(default=None)

Note: Because the default goes through type conversion, it also has to pass the check.

Note that default=None is case sensitive.

List Values

It’s possible that you will want to specify a list as a default value. To avoid confusing syntax with commas and quotes
you use a list constructor to specify that keyword arguments are lists. This includes the default value. This makes
checks look something like:

checkname(default=list('val1', 'val2', 'val3'))

This works with all keyword arguments, but is most useful for default values.

1.1. ConfigObj 5 Introduction and Reference 31

configobj Documentation, Release 5.0.6

Repeated Sections

Repeated sections are a way of specifying a configspec for a section that should be applied to all unspecified subsec-
tions in the same section.

The easiest way of explaining this is to give an example. Suppose you have a config file that describes a dog. That
dog has various attributes, but it can also have many fleas. You don’t know in advance how many fleas there will be,
or what they will be called, but you want each flea validated against the same configspec.

We can define a section called fleas. We want every flea in that section (every sub-section) to have the same configspec
applied to it. We do this by defining a single section called __many__.

[dog]
name = string(default=Rover)
age = float(0, 99, default=0)

[[fleas]]

[[[__many__]]]
bloodsucker = boolean(default=True)
children = integer(default=10000)
size = option(small, tiny, micro, default=tiny)

Every flea on our dog will now be validated using the __many__ configspec.

__many__ sections can have sub-sections, including their own __many__ sub-sections. Defaults work in the normal
way in repeated sections.

Repeated Values

As well as using __many__ to validate unspecified sections you can use it to validate values. For example, to specify
that all values in a section should be integers:

[section]
__many__ = integer

If you want to use repeated values alongside repeated sections you can call one __many__ and the other
___many___ (with three underscores).

Copy Mode

Because you can specify default values in your configspec, you can use ConfigObj to write out default config files for
your application.

However, normally values supplied from a default in a configspec are not written out by the write method.

To do this, you need to specify copy=True when you call validate. As well as not marking values as default, all the
comments in the configspec file will be copied into your ConfigObj instance.

from configobj import ConfigObj
from validate import Validator
vdt = Validator()
config = ConfigObj(configspec='default.ini')
config.filename = 'new_default.ini'
config.validate(vdt, copy=True)
config.write()

32 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

If you need to support hashes in the configspec values then you must create it with _inspec=True. This has the
side effect of switching off the parsing of inline comments, meaning that they won’t be copied into the new config file.
(ConfigObj syntax is slightly different from configspec syntax and the parser can’t support both inline comments and
hashes in configspec values.)

Validation and Interpolation

String interpolation and validation don’t play well together. When validation changes type it sets the value. If the
value uses interpolation, then the interpolation reference would normally be overwritten. Calling write would then
use the absolute value and the interpolation reference would be lost.

As a compromise - if the value is unchanged by validation then it is not reset. This means strings that pass through
validation unmodified will not be overwritten. If validation changes type - the value has to be overwritten, and any
interpolation references are lost.

Extra Values

After validation the extra_values member of every section that is listed in the configspec will be populated with
the names of members that are in the config file but not in the configspec.

If you are reporting configuration errors to your user this information can be useful, for example some missing entries
may be due to misspelt entries that appear as extra values.

See the get_extra_values function

New in ConfigObj 4.7.0.

SimpleVal

You may not need a full validation process, but still want to check if all the expected values are present.

Provided as part of the ConfigObj module is the SimpleVal object. This has a dummy test method that always
passes.

The only reason a test will fail is if the value is missing. The return value from validate will either be True,
meaning all present, or a dictionary with False for all missing values/sections.

To use it, you still need to pass in a valid configspec when you create the ConfigObj, but just set all the values to ''.
Then create an instance of SimpleVal and pass it to the validate method.

As a trivial example if you had the following config file:

config file for an application
port = 80
protocol = http
domain = voidspace
top_level_domain = org.uk

You would write the following configspec:

port = ''
protocol = ''
domain = ''
top_level_domain = ''

1.1. ConfigObj 5 Introduction and Reference 33

configobj Documentation, Release 5.0.6

config = Configobj(filename, configspec=configspec)
val = SimpleVal()
test = config.validate(val)
if test == True:

print 'All values present.'
elif test == False:

print 'No values present!'
else:

for entry in test:
if test[entry] == False:

print '"%s" missing.' % entry

1.1.10 Empty values

Many config files from other applications allow empty values. As of version 4.3.0, ConfigObj will read these as an
empty string.

A new option/attribute has been added (write_empty_values) to allow ConfigObj to write empty strings as
empty values.

from configobj import ConfigObj
cfg = '''

key =
key2 = # a comment

'''.splitlines()
config = ConfigObj(cfg)
print config
ConfigObj({'key': '', 'key2': ''})

config.write_empty_values = True
for line in config.write():

print line

key =
key2 = # a comment

1.1.11 unrepr mode

The unrepr option allows you to store and retrieve the basic Python data-types using config files. It has to use a
slightly different syntax to normal ConfigObj files. Unsurprisingly it uses Python syntax.

This means that lists are different (they are surrounded by square brackets), and strings must be quoted.

The types that unrepr can work with are :

strings, lists tuples
None, True, False
dictionaries, integers, floats
longs and complex numbers

You can’t store classes, types or instances.

unrepr uses repr(object) to write out values, so it currently doesn’t check that you are writing valid objects. If
you attempt to read an unsupported value, ConfigObj will raise a configobj.UnknownType exception.

34 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

Values that are triple quoted cased. The triple quotes are removed before converting. This means that you can use
triple quotes to write dictionaries over several lines in your config files. They won’t be written like this though.

If you are writing config files by hand, for use with unrepr, you should be aware of the following differences from
normal ConfigObj syntax :

List : ['A List', 'With', 'Strings']

Strings : "Must be quoted."

Backslash : "The backslash must be escaped \\"

These all follow normal Python syntax.

In unrepr mode inline comments are not saved. This is because lines are parsed using the compiler package which
discards comments.

1.1.12 String Interpolation

Note: String interpolation can slow down (slightly) the fetching of values from your config object. If you aren’t using
interpolation and it is performance critical then create your instance with interpolation=False.

ConfigObj allows string interpolation similar to the way ConfigParser or string.Template work. The value
of the interpolation attribute determines which style of interpolation you want to use. Valid values are “Config-
Parser” or “Template” (case-insensitive, so “configparser” and “template” will also work). For backwards compatibil-
ity reasons, the value True is also a valid value for the interpolation attribute, and will select ConfigParser-
style interpolation. At some undetermined point in the future, that default may change to Template-style interpola-
tion.

For ConfigParser-style interpolation, you specify a value to be substituted by including %(name)s in the value.

For Template-style interpolation, you specify a value to be substituted by including ${cl}name{cr} in the value.
Alternately, if ‘name’ is a valid Python identifier (i.e., is composed of nothing but alphanumeric characters, plus the
underscore character), then the braces are optional and the value can be written as $name.

Note that ConfigParser-style interpolation and Template-style interpolation are mutually exclusive; you cannot
have a configuration file that’s a mix of one or the other. Pick one and stick to it. Template-style interpolation is
simpler to read and write by hand, and is recommended if you don’t have a particular reason to use ConfigParser-
style.

Interpolation checks first the current section to see if name is the key to a value. (‘name’ is case sensitive).

If it doesn’t find it, next it checks the ‘DEFAULT’ sub-section of the current section.

If it still doesn’t find it, it moves on to check the parent section and the parent section’s ‘DEFAULT’ subsection, and
so on all the way up to the main section.

If the value specified isn’t found in any of these locations, then a MissingInterpolationOption error is raised
(a subclass of ConfigObjError).

If it is found then the returned value is also checked for substitutions. This allows you to make up compound values (for
example directory paths) that use more than one default value. It also means it’s possible to create circular references. If
there are any circular references which would cause an infinite interpolation loop, an InterpolationLoopError
is raised.

Both of these errors are subclasses of InterpolationError, which is a subclass of ConfigObjError.

String interpolation and validation don’t play well together. This is because validation overwrites values - and so may
erase the interpolation references. See Validation and Interpolation. (This can only happen if validation has to change
the value).

1.1. ConfigObj 5 Introduction and Reference 35

http://docs.python.org/lib/compiler.html

configobj Documentation, Release 5.0.6

New in ConfigObj 4.7.0: String interpolation is now done in members of list values.

String Interpolation and List Values

Since version 4.7 string interpolation is done on string members of list values. If interpolation changes any members
of the list then what you get back is a copy of the list rather than the original list.

This makes fetching list values slightly slower when interpolation is on, it also means that if you mutate the list changes
won’t be reflected in the original list:

>>> c = ConfigObj()
>>> c['foo'] = 'boo'
>>> c['bar'] = ['%(foo)s']
>>> c['bar']
['boo']
>>> c['bar'].append('fish')
>>> c['bar']
['boo']

Instead of mutating the list you must create a new list and reassign it.

1.1.13 Comments

Any line that starts with a ‘#’, possibly preceded by whitespace, is a comment.

If a config file starts with comments then these are preserved as the initial_comment.

If a config file ends with comments then these are preserved as the final_comment.

Every key or section marker may have lines of comments immediately above it. These are saved as the comments
attribute of the section. Each member is a list of lines.

You can also have a comment inline with a value. These are saved as the inline_comments attribute of the section,
with one entry per member of the section.

Subsections (section markers in the config file) can also have comments.

See Section Attributes for more on these attributes.

These comments are all written back out by the write method.

1.1.14 flatten_errors

flatten_errors(cfg, res)

Validation is a powerful way of checking that the values supplied by the user make sense.

The validate method returns a results dictionary that represents pass or fail for each value. This doesn’t give you any
information about why the check failed.

flatten_errors is an example function that turns a results dictionary into a flat list, that only contains values that
failed.

cfg is the ConfigObj instance being checked, res is the results dictionary returned by validate.

It returns a list of keys that failed. Each member of the list is a tuple:

36 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

([list of sections...], key, result)

If validate was called with preserve_errors=False (the default) then result will always be False.

list of sections is a flattened list of sections that the key was found in.

If the section was missing then key will be None.

If the value (or section) was missing then result will be False.

If validate was called with preserve_errors=True and a value was present, but failed the check, then
result will be the exception object returned. You can use this as a string that describes the failure.

For example :

The value “3” is of the wrong type.

Example Usage

The output from flatten_errors is a list of tuples.

Here is an example of how you could present this information to the user.

vtor = validate.Validator()
ini is your config file - cs is the configspec
cfg = ConfigObj(ini, configspec=cs)
res = cfg.validate(vtor, preserve_errors=True)
for entry in flatten_errors(cfg, res):

each entry is a tuple
section_list, key, error = entry
if key is not None:

section_list.append(key)
else:

section_list.append('[missing section]')
section_string = ', '.join(section_list)
if error == False:

error = 'Missing value or section.'
print section_string, ' = ', error

1.1.15 get_extra_values

get_extra_values(conf)

New in ConfigObj 4.7.0.

Find all the values and sections not in the configspec from a validated ConfigObj.

get_extra_values returns a list of tuples where each tuple represents either an extra section, or an extra value.

The tuples contain two values, a tuple representing the section the value is in and the name of the extra values. For extra
values in the top level section the first member will be an empty tuple. For values in the ‘foo’ section the first member
will be ('foo',). For members in the ‘bar’ subsection of the ‘foo’ section the first member will be ('foo',
'bar').

Extra sections will only have one entry. Values and subsections inside an extra section aren’t listed separately.

NOTE: If you call get_extra_values on a ConfigObj instance that hasn’t been validated it will return an empty
list.

1.1. ConfigObj 5 Introduction and Reference 37

configobj Documentation, Release 5.0.6

Example Usage

The output from get_extra_values is a list of tuples.

Here is an example of how you could present this information to the user.

vtor = validate.Validator()
ini is your config file - cs is the configspec
cfg = ConfigObj(ini, configspec=cs)
cfg.validate(vtor, preserve_errors=True)

for sections, name in get_extra_values(cfg):

this code gets the extra values themselves
the_section = cfg
for section in sections:

the_section = cfg[section]

the_value may be a section or a value
the_value = the_section[name]

section_or_value = 'value
if isinstance(the_value, dict):

Sections are subclasses of dict
section_or_value = 'section'

section_string = ', '.join(sections) or "top level"
print 'Extra entry in section: %s. Entry %r is a %s' % (section_string, name,

→˓section_or_value)

1.1.16 CREDITS

ConfigObj version 4 and forward is written by (and copyright) Michael Foord, Nicola Larosa, Rob Dennis and Eli
Courtwright.

Rob Dennis and Eli Courtwright added Python 2 and 3 compatibility in a single source starting with version 5, and
have taken stewardship of ConfigObj moving forward.

Particularly thanks to Nicola Larosa for help on the config file spec, the validation system and the doctests.

validate.py was originally written by Michael Foord and Mark Andrews.

Thanks to many others for input, patches and bugfixes.

1.1.17 LICENSE

ConfigObj, and related files, are licensed under the BSD license. This is a very unrestrictive license, but it comes with
the usual disclaimer. This is free software: test it, break it, just don’t blame us if it eats your data ! Of course if it does,
let us know and we’ll fix the problem so it doesn’t happen to anyone else:

Copyright (C) 2003-2023:
(name) : (email)
Michael Foord: fuzzyman AT voidspace DOT org DOT uk
Nicola Larosa: nico AT tekNico DOT net
Rob Dennis: rdennis AT gmail DOT com
Eli Courtwright: eli AT courtwright DOT org

(continues on next page)

38 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

(continued from previous page)

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* None of the authors names may be used to endorse or
promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You should also be able to find a copy of this license at : BSD License

1.1.18 TODO

Better support for configuration from multiple files, including tracking where the original file came from and writing
changes to the correct file.

Make newline a keyword argument (as well as an attribute) ?

UTF16 encoded files, when returned as a list of lines, will have the BOM at the start of every line. Should this be
removed from all but the first line ?

Option to set warning type for unicode decode ? (Defaults to strict).

A method to optionally remove uniform indentation from multiline values. (do as an example of using walk - along
with string-escape)

Should the results dictionary from validate be an ordered dictionary if odict is available ?

Implement some of the sequence methods (which include slicing) from the newer odict ?

Preserve line numbers of values (and possibly the original text of each value).

1.1.19 ISSUES

Note: Please file any bug reports at the Github Page

There is currently no way to specify the encoding of a configspec file.

1.1. ConfigObj 5 Introduction and Reference 39

http://opensource.org/licenses/BSD-3-Clause
http://www.voidspace.org.uk/python/odict.html
https://github.com/DiffSK/configobj

configobj Documentation, Release 5.0.6

As a consequence of the changes to configspec handling in version 4.6.0, when you create a ConfigObj instance and
provide a configspec, the configspec attribute is only set on the ConfigObj instance - it isn’t set on the sections until
you validate. You also can’t set the configspec attribute to be a dictionary. This wasn’t documented but did work
previously.

In order to fix the problem with hashes in configspecs I had to turn off the parsing of inline comments in configspecs.
This will only affect you if you are using copy=True when validating and expecting inline comments to be copied
from the configspec into the ConfigObj instance (all other comments will be copied as usual).

If you create the configspec by passing in a ConfigObj instance (usual way is to pass in a filename or list of lines) then
you should pass in _inspec=True to the constructor to allow hashes in values. This is the magic that switches off
inline comment parsing.

When using copy mode for validation, it won’t copy DEFAULT sections. This is so that you can use interpolation in
configspec files. This is probably true even if interpolation is off in the configspec.

You can’t have a keyword with the same name as a section (in the same section). They are both dictionary keys - so
they would overlap.

ConfigObj doesn’t quote and unquote values if list_values=False. This means that leading or trailing whites-
pace in values will be lost when writing. (Unless you manually quote).

Interpolation checks first the current section, then the ‘DEFAULT’ subsection of the current section, before moving on
to the current section’s parent and so on up the tree.

Does it matter that we don’t support the ‘:’ divider, which is supported by ConfigParser ?

String interpolation and validation don’t play well together. When validation changes type it sets the value. This will
correctly fetch the value using interpolation - but then overwrite the interpolation reference. If the value is unchanged
by validation (it’s a string) - but other types will be.

1.1.20 CHANGELOG

This is an abbreviated changelog showing the major releases up to version 4. From version 4 it lists all releases and
changes.

2023/01/18 - Version 5.0.8

• fixing/test for a regression introduced in 5.0.7 that prevented import validate from working

2023/01/17 - Version 5.0.7

• Update documentation to remove some dead links

• Update unit tests to go against updated versions of Python

2014/08/25 - Version 5.0.6

• BUGFIX: Did not correctly handle %-chars in invalid lines

• BUGFIX: unhelpful error message when nesting invalid

2014/04/28 - Version 5.0.5

• BUGFIX: error in writing out config files to disk with non-ascii characters

40 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

2014/04/11 - Version 5.0.4

• BUGFIX: correcting that the code path fixed in 5.0.3 didn’t cover reading in config files

2014/04/04 - Version 5.0.3

• BUGFIX: not handling unicode encoding well, especially with respect to writing out files

2014/02/27 - Version 5.0.2

• Specific error message for installing version this version on Python versions older than 2.5

• Documentation corrections

2014/02/19 - Version 5.0.1

• BUGFIX: Fixed regression on python 2.x where passing an encoding parameter did not convert a bytestring
config file (which is the most common) to unicode. Added unit tests for this and related cases

• BUGFIX: A particular error message would fail to display with a type error on python 2.6 only

2014/02/08 - Version 5.0.0

• Python 3 single-source compatibility at the cost of a more restrictive set of versions: 2.6, 2.7, 3.2, 3.3 (otherwise
unchanged)

• New maintainers: Rob Dennis and Eli Courtwright

• New home on github

2010/02/27 - Version 4.7.2

• BUGFIX: Restore Python 2.3 compatibility

• BUGFIX: Members that were lists were being returned as copies due to interpolation introduced in 4.7. Lists
are now only copies if interpolation changes a list member.

• BUGFIX: pop now does interpolation in list values as well.

• BUGFIX: where interpolation matches a section name rather than a value it is ignored instead of raising an
exception on fetching the item.

• BUGFIX: values that use interpolation to reference members that don’t exist can now be repr’d.

• BUGFIX: Fix to avoid writing ‘\r\r\n’ on Windows when given a file opened in text write mode (‘w’).

See String Interpolation and List Values for information about the problem with lists and interpolation.

2010/02/06 - Version 4.7.1

• Fix bug in options deprecation warning added in 4.7.0

1.1. ConfigObj 5 Introduction and Reference 41

configobj Documentation, Release 5.0.6

2010/01/09 - Version 4.7.0

• Minimum supported version of Python is now 2.3

• ~25% performance improvement thanks to Christian Heimes

• String interpolation now works in list value members

• After validation any additional entries not in the configspec are listed in the extra_values section member

• Addition of the get_extra_values function for finding all extra values in a validated ConfigObj instance

• Deprecated the use of the options dictionary in the ConfigObj constructor and added explicit keyword argu-
ments instead. Use **options if you want to initialise a ConfigObj instance from a dictionary

• Constructing a ConfigObj from an existing ConfigObj instance now preserves the order of values and sections
from the original instance in the new one

• BUGFIX: Checks that failed validation would not populate default_values and
restore_default_value() wouldn’t work for those entries

• BUGFIX: clear() now clears ‘defaults’

• BUGFIX: empty values in list values were accidentally valid syntax. They now raise a ParseError. e.g.
“value = 1, , 2”

• BUGFIX: Change to the result of a call to validate when preserve_errors is True. Previously sections
where all values failed validation would return False for the section rather than preserving the errors. False will
now only be returned for a section if it is missing

• Distribution includes version 1.0.1 of validate.py

• Removed __revision__ and __docformat__

2009/04/13 - Version 4.6.0

• Pickling of ConfigObj instances now supported (thanks to Christian Heimes)

• Hashes in confgspecs are now allowed (see note below)

• Replaced use of hasattr (which can swallow exceptions) with getattr

• __many__ in configspecs can refer to scalars (ordinary values) as well as sections

• You can use ___many___ (three underscores!) where you want to use __many__ as well

• You can now have normal sections inside configspec sections that use __many__

• You can now create an empty ConfigObj with a configspec, programmatically set values and then validate

• A section that was supplied as a value (or vice-versa) in the actual config file would cause an exception during
validation (the config file is still broken of course, but it is now handled gracefully)

• Added as_list method

• Removed the deprecated istrue, encode and decode methods

• Running test_configobj.py now also runs the doctests in the configobj module

As a consequence of the changes to configspec handling, when you create a ConfigObj instance and provide a con-
figspec, the configspec attribute is only set on the ConfigObj instance - it isn’t set on the sections until you validate.
You also can’t set the configspec attribute to be a dictionary. This wasn’t documented but did work previously.

42 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

In order to fix the problem with hashes in configspecs I had to turn off the parsing of inline comments in configspecs.
This will only affect you if you are using copy=True when validating and expecting inline comments to be copied
from the configspec into the ConfigObj instance (all other comments will be copied as usual).

If you create the configspec by passing in a ConfigObj instance (usual way is to pass in a filename or list of lines) then
you should pass in _inspec=True to the constructor to allow hashes in values. This is the magic that switches off
inline comment parsing.

2008/06/27 - Version 4.5.3

BUGFIX: fixed a problem with copy=True when validating with configspecs that use __many__ sections.

2008/02/05 - Version 4.5.2

Distribution updated to include version 0.3.2 of validate. This means that None as a default value in configspecs
works.

2008/02/05 - Version 4.5.1

Distribution updated to include version 0.3.1 of validate. This means that Unicode configspecs now work.

2008/02/05 - Version 4.5.0

ConfigObj will now guarantee that files will be written terminated with a newline.

ConfigObj will no longer attempt to import the validate module, until/unless you call ConfigObj.validate
with preserve_errors=True. This makes it faster to import.

New methods restore_default and restore_defaults. restore_default resets an entry to its default
value (and returns that value). restore_defaults resets all entries to their default value. It doesn’t modify entries
without a default value. You must have validated a ConfigObj (which populates the default_values dictionary)
before calling these methods.

BUGFIX: Proper quoting of keys, values and list values that contain hashes (when writing). When
list_values=False, values containing hashes are triple quoted.

Added the reload method. This reloads a ConfigObj from file. If the filename attribute is not set then a
ReloadError (a new exception inheriting from IOError) is raised.

BUGFIX: Files are read in with ‘rb’ mode, so that native/non-native line endings work!

Minor efficiency improvement in unrepr mode.

Added missing docstrings for some overidden dictionary methods.

Added the reset method. This restores a ConfigObj to a freshly created state.

Removed old CHANGELOG file.

2007/02/04 - Version 4.4.0

Official release of 4.4.0

1.1. ConfigObj 5 Introduction and Reference 43

configobj Documentation, Release 5.0.6

2006/12/17 - Version 4.3.3-alpha4

By Nicola Larosa

Allowed arbitrary indentation in the indent_type parameter, removed the NUM_INDENT_SPACES and
MAX_INTERPOL_DEPTH (a leftover) constants, added indentation tests (including another docutils workaround,
sigh), updated the documentation.

By Michael Foord

Made the import of compiler conditional so that ConfigObj can be used with IronPython.

2006/12/17 - Version 4.3.3-alpha3

By Nicola Larosa

Added a missing self. in the _handle_comment method and a related test, per Sourceforge bug #1523975.

2006/12/09 - Version 4.3.3-alpha2

By Nicola Larosa

Changed interpolation search strategy, based on this patch by Robin Munn: http://sourceforge.net/mailarchive/
message.php?msg_id=17125993

2006/12/09 - Version 4.3.3-alpha1

By Nicola Larosa

Added Template-style interpolation, with tests, based on this patch by Robin Munn: http://sourceforge.net/mailarchive/
message.php?msg_id=17125991 (awful archives, bad Sourceforge, bad).

2006/06/04 - Version 4.3.2

Changed error handling, if parsing finds a single error then that error will be re-raised. That error will still have an
errors and a config attribute.

Fixed bug where ‘\n’ terminated files could be truncated.

Bugfix in unrepr mode, it couldn’t handle ‘#’ in values. (Thanks to Philippe Normand for the report.)

As a consequence of this fix, ConfigObj doesn’t now keep inline comments in unrepr mode. This is because the
parser in the compiler package doesn’t keep comments.

Error messages are now more useful. They tell you the number of parsing errors and the line number of the first error.
(In the case of multiple errors.)

Line numbers in exceptions now start at 1, not 0.

Errors in unrepr mode are now handled the same way as in the normal mode. The errors stored will be an
UnreprError.

44 Chapter 1. Reading and Writing Config Files

http://www.codeplex.com/IronPython
http://sourceforge.net/mailarchive/message.php?msg_id=17125993
http://sourceforge.net/mailarchive/message.php?msg_id=17125993
http://sourceforge.net/mailarchive/message.php?msg_id=17125991
http://sourceforge.net/mailarchive/message.php?msg_id=17125991
http://docs.python.org/lib/compiler.html

configobj Documentation, Release 5.0.6

2006/04/29 - Version 4.3.1

Added validate.py back into configobj.zip. (Thanks to Stewart Midwinter)

Updated to validate.py 0.2.2.

Preserve tuples when calling the dict method. (Thanks to Gustavo Niemeyer.)

Changed __repr__ to return a string that contains ConfigObj({ ... }).

Change so that an options dictionary isn’t modified by passing it to ConfigObj. (Thanks to Artarious.)

Added ability to handle negative integers in unrepr. (Thanks to Kevin Dangoor.)

2006/03/24 - Version 4.3.0

Moved the tests and the CHANGELOG (etc) into a separate file. This has reduced the size of configobj.py by
about 40%.

Added the unrepr mode to reading and writing config files. Thanks to Kevin Dangoor for this suggestion.

Empty values are now valid syntax. They are read as an empty string ''. (key =, or key = # comment.)

validate now honours the order of the configspec.

Added the copy mode to validate. Thanks to Louis Cordier for this suggestion.

Fixed bug where files written on windows could be given '\r\r\n' line terminators.

Fixed bug where last occurring comment line could be interpreted as the final comment if the last line isn’t terminated.

Fixed bug where nested list values would be flattened when write is called. Now sub-lists have a string representation
written instead.

Deprecated encode and decode methods instead.

You can now pass in a ConfigObj instance as a configspec (remember to read the configspec file using
list_values=False).

Sorted footnotes in the docs.

2006/02/16 - Version 4.2.0

Removed BOM_UTF8 from __all__.

The BOM attribute has become a boolean. (Defaults to False.) It is only True for the UTF16/UTF8 encodings.

File like objects no longer need a seek attribute.

Full unicode support added. New options/attributes encoding, default_encoding.

ConfigObj no longer keeps a reference to file like objects. Instead the write method takes a file like object as an
optional argument. (Which will be used in preference of the filename attribute if that exists as well.)

utf16 files decoded to unicode.

If BOM is True, but no encoding specified, then the utf8 BOM is written out at the start of the file. (It will normally
only be True if the utf8 BOM was found when the file was read.)

Thanks to Aaron Bentley for help and testing on the unicode issues.

File paths are not converted to absolute paths, relative paths will remain relative as the filename attribute.

Fixed bug where final_comment wasn’t returned if write is returning a list of lines.

1.1. ConfigObj 5 Introduction and Reference 45

configobj Documentation, Release 5.0.6

Deprecated istrue, replaced it with as_bool.

Added as_int and as_float.

2005/12/14 - Version 4.1.0

Added merge, a recursive update.

Added preserve_errors to validate and the flatten_errors example function.

Thanks to Matthew Brett for suggestions and helping me iron out bugs.

Fixed bug where a config file is all comment, the comment will now be initial_comment rather than
final_comment.

Validation no longer done on the ‘DEFAULT’ section (only in the root level). This allows interpolation in configspecs.

Also use the new list syntax in validate 0.2.1. (For configspecs).

2005/12/02 - Version 4.0.2

Fixed bug in create_empty. Thanks to Paul Jimenez for the report.

2005/11/05 - Version 4.0.1

Fixed bug in Section.walk when transforming names as well as values.

Added the istrue method. (Fetches the boolean equivalent of a string value).

Fixed list_values=False - they are now only quoted/unquoted if they are multiline values.

List values are written as item, item rather than item,item.

2005/10/17 - Version 4.0.0

ConfigObj 4.0.0 Final

Fixed bug in setdefault. When creating a new section with setdefault the reference returned would be to the
dictionary passed in not to the new section. Bug fixed and behaviour documented.

Obscure typo/bug fixed in write. Wouldn’t have affected anyone though.

2005/09/09 - Version 4.0.0 beta 5

Removed PositionError.

Allowed quotes around keys as documented.

Fixed bug with commas in comments. (matched as a list value)

2005/09/07 - Version 4.0.0 beta 4

Fixed bug in __delitem__. Deleting an item no longer deletes the inline_comments attribute.

Fixed bug in initialising ConfigObj from a ConfigObj.

Changed the mailing list address.

46 Chapter 1. Reading and Writing Config Files

configobj Documentation, Release 5.0.6

2005/08/28 - Version 4.0.0 beta 3

Interpolation is switched off before writing out files.

Fixed bug in handling StringIO instances. (Thanks to report from Gustavo Niemeyer.)

Moved the doctests from the __init__ method to a separate function. (For the sake of IDE calltips).

2005/08/25 - Version 4.0.0 beta 2

Amendments to validate.py.

First public release.

2005/08/21 - Version 4.0.0 beta 1

Reads nested subsections to any depth.

Multiline values.

Simplified options and methods.

New list syntax.

Faster, smaller, and better parser.

Validation greatly improved. Includes:

• type conversion

• default values

• repeated sections

Improved error handling.

Plus lots of other improvements.

2004/05/24 - Version 3.0.0

Several incompatible changes: another major overhaul and change. (Lots of improvements though).

Added support for standard config files with sections. This has an entirely new interface: each section is a dictionary
of values.

Changed the update method to be called writein: update clashes with a dict method.

Made various attributes keyword arguments, added several.

Configspecs and orderlists have changed a great deal.

Removed support for adding dictionaries: use update instead.

Now subclasses a new class called caselessDict. This should add various dictionary methods that could have caused
errors before.

It also preserves the original casing of keywords when writing them back out.

Comments are also saved using a caselessDict.

Using a non-string key will now raise a TypeError rather than converting the key.

Added an exceptions keyword for much better handling of errors.

1.1. ConfigObj 5 Introduction and Reference 47

configobj Documentation, Release 5.0.6

Made creatempty=False the default.

Now checks indict and any keyword args. Keyword args take precedence over indict.

' ', ':', '=', ',' and '\t' are now all valid dividers where the keyword is unquoted.

ConfigObj now does no type checking against configspec when you set items.

delete and add methods removed (they were unnecessary).

Docs rewritten to include all this gumph and more; actually ConfigObj is really easy to use.

Support for stdout was removed.

A few new methods added.

Charmap is now incorporated into ConfigObj.

2004/03/14 - Version 2.0.0 beta

Re-written it to subclass dict. My first forays into inheritance and operator overloading.

The config object now behaves like a dictionary.

I’ve completely broken the interface, but I don’t think anyone was really using it anyway.

This new version is much more ‘classy’.

It will also read straight from/to a filename and completely parse a config file without you having to supply a config
spec.

Uses listparse, so can handle nested list items as values.

No longer has getval and setval methods: use normal dictionary methods, or add and delete.

2004/01/29 - Version 1.0.5

Version 1.0.5 has a couple of bugfixes as well as a couple of useful additions over previous versions.

Since 1.0.0 the buildconfig function has been moved into this distribution, and the methods reset, verify, getval and
setval have been added.

A couple of bugs have been fixed.

Origins

ConfigObj originated in a set of functions for reading config files in the atlantibots project. The original functions
were written by Rob McNeur.

1.1.21 Footnotes

48 Chapter 1. Reading and Writing Config Files

http://www.voidspace.org.uk/atlantibots/

CHAPTER 2

Validation Schema with validate.py

2.1 Using the Validator class

Authors Michael Foord, Nicola Larosa, Rob Dennis, Eli Courtwright, Mark Andrews

Version Validate 2.0.0

Date 2014/02/08

Homepage Github Page

License BSD License

Support Mailing List

Validate Manual

• Validation Schema with validate.py

– Using the Validator class

* Introduction

* Downloading

· Files

* The standard functions

* Using Validator

· Instantiate

· Adding functions

· Writing the check

· The check method

49

https://github.com/DiffSK/configobj
http://opensource.org/licenses/BSD-3-Clause
http://lists.sourceforge.net/lists/listinfo/configobj-develop

configobj Documentation, Release 5.0.6

· Default Values

· List Values

· get_default_value

* Validator Exceptions

* Writing check functions

· Example

* Known Issues

* TODO

* ISSUES

* CHANGELOG

· 2014/02/08 - Version 2.0.0

· 2009/10/25 - Version 1.0.1

· 2009/04/13 - Version 1.0.0

· 2008/02/24 - Version 0.3.2

· 2008/02/05 - Version 0.3.1

· 2008/02/05 - Version 0.3.0

· 2007/02/04 Version 0.2.3

· 2006/12/17 Version 0.2.3-alpha1

· 2006/04/29 Version 0.2.2

· 2005/12/16 Version 0.2.1

· 2005/08/18 Version 0.2.0

· 2005/02/01 Version 0.1.0

2.1.1 Introduction

Validation is used to check that supplied values conform to a specification.

The value can be supplied as a string, e.g. from a config file. In this case the check will also convert the value to the
required type. This allows you to add validation as a transparent layer to access data stored as strings. The validation
checks that the data is correct and converts it to the expected type.

Checks are also strings, and are easy to write. One generic system can be used to validate information from different
sources via a single consistent mechanism.

Checks look like function calls, and map to function calls. They can include parameters and keyword arguments.
These arguments are passed to the relevant function by the Validator instance, along with the value being checked.

The syntax for checks also allows for specifying a default value. This default value can be None, no matter what the
type of the check. This can be used to indicate that a value was missing, and so holds no useful value.

Functions either return a new value, or raise an exception. See Validator Exceptions for the low down on the exception
classes that validate.py defines.

Some standard functions are provided, for basic data types; these come built into every validator. Additional checks
are easy to write: they can be provided when the Validator is instantiated, or added afterwards.

50 Chapter 2. Validation Schema with validate.py

configobj Documentation, Release 5.0.6

Validate was primarily written to support ConfigObj, but is designed to be applicable to many other situations.

For support and bug reports please use the ConfigObj Github Page

2.1.2 Downloading

The current version is 2.0.0, dated 8th February 2014.

You can obtain validate in the following ways :

Files

• validate.py from Github Page

• The latest development version can be obtained from the Github Page.

2.1.3 The standard functions

The standard functions come built-in to every Validator instance. They work with the following basic data types :

• integer

• float

• boolean

• string

• ip_addr

plus lists of these datatypes.

Adding additional checks is done through coding simple functions.

The full set of standard checks are :

‘integer’ matches integer values (including negative). Takes optional ‘min’ and ‘max’ arguments:

integer()
integer(3, 9) # any value from 3 to 9
integer(min=0) # any positive value
integer(max=9)

‘float’ matches float values Has the same parameters as the integer check.

‘boolean’

matches boolean values: True or False. Acceptable string values for True are:

true, on, yes, 1

Acceptable string values for False are:

false, off, no, 0

Any other value raises an error.

‘string’ matches any string. Takes optional keyword args ‘min’ and ‘max’ to specify min and max length
of string.

‘ip_addr’ matches an Internet Protocol address, v.4, represented by a dotted-quad string, i.e. ‘1.2.3.4’.

2.1. Using the Validator class 51

https://github.com/DiffSK/configobj
https://github.com/DiffSK/configobj
https://github.com/DiffSK/configobj

configobj Documentation, Release 5.0.6

‘list’ matches any list. Takes optional keyword args ‘min’, and ‘max’ to specify min and max sizes of the
list. The list checks always return a list.

force_list matches any list, but if a single value is passed in will coerce it into a list containing that value.
Useful for configobj if the user forgot the trailing comma to turn a single value into a list.

‘tuple’ matches any list. This check returns a tuple rather than a list.

‘int_list’ Matches a list of integers. Takes the same arguments as list.

‘float_list’ Matches a list of floats. Takes the same arguments as list.

‘bool_list’ Matches a list of boolean values. Takes the same arguments as list.

‘string_list’ Matches a list of strings. Takes the same arguments as list.

‘ip_addr_list’ Matches a list of IP addresses. Takes the same arguments as list.

‘mixed_list’ Matches a list with different types in specific positions. List size must match the number of
arguments.

Each position can be one of:

int, str, boolean, float, ip_addr

So to specify a list with two strings followed by two integers, you write the check as:

mixed_list(str, str, int, int)

‘pass’ matches everything: it never fails and the value is unchanged. It is also the default if no check is
specified.

‘option’ matches any from a list of options. You specify this test with:

option('option 1', 'option 2', 'option 3')

The following code will work without you having to specifically add the functions yourself.

from validate import Validator
#
vtor = Validator()
newval1 = vtor.check('integer', value1)
newval2 = vtor.check('boolean', value2)
etc ...

Note: Of course, if these checks fail they raise exceptions. So you should wrap them in try...except blocks.
Better still, use ConfigObj for a higher level interface.

2.1.4 Using Validator

Using Validator is very easy. It has one public attribute and one public method.

Shown below are the different steps in using Validator.

The only additional thing you need to know, is about Writing check functions.

52 Chapter 2. Validation Schema with validate.py

configobj Documentation, Release 5.0.6

Instantiate

from validate import Validator
vtor = Validator()

or even :

from validate import Validator
#
fdict = {

'check_name1': function1,
'check_name2': function2,
'check_name3': function3,

}
#
vtor = Validator(fdict)

The second method adds a set of your functions as soon as your validator is created. They are stored in the vtor.
functions dictionary. The ‘key’ you give them in this dictionary is the name you use in your checks (not the
original function name).

Dictionary keys/functions you pass in can override the built-in ones if you want.

Adding functions

The code shown above, for adding functions on instantiation, has exactly the same effect as the following code :

from validate import Validator
#
vtor = Validator()
vtor.functions['check_name1'] = function1
vtor.functions['check_name2'] = function2
vtor.functions['check_name3'] = function3

vtor.functions is just a dictionary that maps names to functions, so we could also have called vtor.
functions.update(fdict).

Writing the check

As we’ve heard, the checks map to the names in the functions dictionary. You’ve got a full list of The standard
functions and the arguments they take.

If you’re using Validator from ConfigObj, then your checks will look like:

keyword = int_list(max=6)

but the check part will be identical .

The check method

If you’re not using Validator from ConfigObj, then you’ll need to call the check method yourself.

If the check fails then it will raise an exception, so you’ll want to trap that. Here’s the basic example :

2.1. Using the Validator class 53

configobj Documentation, Release 5.0.6

from validate import Validator, ValidateError
#
vtor = Validator()
check = "integer(0, 9)"
value = 3
try:

newvalue = vtor.check(check, value)
except ValidateError:

print 'Check Failed.'
else:

print 'Check passed.'

Caution: Although the value can be a string, if it represents a list it should already have been turned into a list of
strings.

Default Values

Some values may not be available, and you may want to be able to specify a default as part of the check.

You do this by passing the keyword missing=True to the check method, as well as a default=value in
the check. (Constructing these checks is done automatically by ConfigObj: you only need to know about the
default=value part) :

check1 = 'integer(default=50)'
check2 = 'option("val 1", "val 2", "val 3", default="val 1")'

assert vtor.check(check1, '', missing=True) == 50
assert vtor.check(check2, '', missing=True) == "val 1"

If you pass in missing=True to the check method, then the actual value is ignored. If no default is specified in
the check, a ValidateMissingValue exception is raised. If a default is specified then that is passed to the check
instead.

If the check has default=None (case sensitive) then vtor.check will always return None (the object). This
makes it easy to tell your program that this check contains no useful value when missing, i.e. the value is optional, and
may be omitted without harm.

Note: As of version 0.3.0, if you specify default='None' (note the quote marks around None) then it will be
interpreted as the string 'None'.

List Values

It’s possible that you would like your default value to be a list. It’s even possible that you will write your own check
functions - and would like to pass them keyword arguments as lists from within the check.

To avoid confusing syntax with commas and quotes you use a list constructor to specify that keyword arguments are
lists. This includes the default value. This makes checks look something like:

checkname(default=list('val1', 'val2', 'val3'))

54 Chapter 2. Validation Schema with validate.py

configobj Documentation, Release 5.0.6

get_default_value

Validator instances have a get_default_value method. It takes a check string (the same string you would
pass to the check method) and returns the default value, converted to the right type. If the check doesn’t define a
default value then this method raises a KeyError.

If the check has been seen before then it will have been parsed and cached already, so this method is not expensive
to call (however the conversion is done each time).

2.1.5 Validator Exceptions

Note: If you only use Validator through ConfigObj, it traps these Exceptions for you. You will still need to know
about them for writing your own check functions.

vtor.check indicates that the check has failed by raising an exception. The appropriate error should be raised in
the check function.

The base error class is ValidateError. All errors (except for VdtParamError) raised are sub-classes of this.

If an unrecognised check is specified then VdtUnknownCheckError is raised.

There are also VdtTypeError and VdtValueError.

If incorrect parameters are passed to a check function then it will (or should) raise VdtParamError. As this indicates
programmer error, rather than an error in the value, it is a subclass of SyntaxError instead of ValidateError.

Note: This means it won’t be caught by ConfigObj - but propagated instead.

If the value supplied is the wrong type, then the check should raise VdtTypeError. e.g. the check requires the
value to be an integer (or representation of an integer) and something else was supplied.

If the value supplied is the right type, but an unacceptable value, then the check should raise VdtValueError. e.g.
the check requires the value to be an integer (or representation of an integer) less than ten and a higher value was
supplied.

Both VdtTypeError and VdtValueError are initialised with the incorrect value. In other words you raise them
like this :

raise VdtTypeError(value)
#
raise VdtValueError(value)

VdtValueError has the following subclasses, which should be raised if they are more appropriate.

• VdtValueTooSmallError

• VdtValueTooBigError

• VdtValueTooShortError

• VdtValueTooLongError

2.1.6 Writing check functions

Writing check functions is easy.

2.1. Using the Validator class 55

configobj Documentation, Release 5.0.6

The check function will receive the value as its first argument, followed by any other parameters and keyword argu-
ments.

If the check fails, it should raise a VdtTypeError or a VdtValueError (or an appropriate subclass).

All parameters and keyword arguments are always passed as strings. (Parsed from the check string).

The value might be a string (or list of strings) and need converting to the right type - alternatively it might already be
a list of integers. Our function needs to be able to handle either.

If the check passes then it should return the value (possibly converted to the right type).

And that’s it !

Example

Here is an example function that requires a list of integers. Each integer must be between 0 and 99.

It takes a single argument specifying the length of the list. (Which allows us to use the same check in more than one
place). If the length can’t be converted to an integer then we need to raise VdtParamError.

Next we check that the value is a list. Anything else should raise a VdtTypeError. The list should also have
‘length’ entries. If the list has more or less entries then we will need to raise a VdtValueTooShortError or a
VdtValueTooLongError.

Then we need to check every entry in the list. Each entry should be an integer between 0 and 99, or a string represen-
tation of an integer between 0 and 99. Any other type is a VdtTypeError, any other value is a VdtValueError
(either too big, or too small).

def special_list(value, length):
"""
Check that the supplied value is a list of integers,
with 'length' entries, and each entry between 0 and 99.
"""
length is supplied as a string
we need to convert it to an integer
try:

length = int(length)
except ValueError:

raise VdtParamError('length', length)
#
Check the supplied value is a list
if not isinstance(value, list):

raise VdtTypeError(value)
#
check the length of the list is correct
if len(value) > length:

raise VdtValueTooLongError(value)
elif len(value) < length:

raise VdtValueTooShortError(value)
#
Next, check every member in the list
converting strings as necessary
out = []
for entry in value:

if not isinstance(entry, (str, unicode, int)):
a value in the list
is neither an integer nor a string
raise VdtTypeError(value)

(continues on next page)

56 Chapter 2. Validation Schema with validate.py

configobj Documentation, Release 5.0.6

(continued from previous page)

elif isinstance(entry, (str, unicode)):
if not entry.isdigit():

raise VdtTypeError(value)
else:

entry = int(entry)
if entry < 0:

raise VdtValueTooSmallError(value)
elif entry > 99:

raise VdtValueTooBigError(value)
out.append(entry)

#
if we got this far, all is well
return the new list
return out

If you are only using validate from ConfigObj then the error type (TooBig, TooSmall, etc) is lost - so you may only
want to raise VdtValueError.

Caution: If your function raises an exception that isn’t a subclass of ValidateError, then ConfigObj won’t
trap it. This means validation will fail.

This is why our function starts by checking the type of the value. If we are passed the wrong type (e.g. an integer
rather than a list) we get a VdtTypeError rather than bombing out when we try to iterate over the value.

If you are using validate in another circumstance you may want to create your own subclasses of ValidateError
which convey more specific information.

2.1.7 Known Issues

The following parses and then blows up. The resulting error message is confusing:

checkname(default=list(1, 2, 3, 4)

This is because it parses as: checkname(default="list(1", 2, 3, 4). That isn’t actually unreasonable,
but the error message won’t help you work out what has happened.

2.1.8 TODO

• A regex check function ?

• A timestamp check function ? (Using the parse function from DateUtil perhaps).

2.1.9 ISSUES

Note: Please file any bug reports to the Github Page

If we could pull tuples out of arguments, it would be easier to specify arguments for ‘mixed_lists’.

2.1. Using the Validator class 57

https://github.com/DiffSK/configobj

configobj Documentation, Release 5.0.6

2.1.10 CHANGELOG

2014/02/08 - Version 2.0.0

• Python 3 single-source compatibility at the cost of a more restrictive set of versions: 2.6, 2.7, 3.2, 3.3 (otherwise
unchanged)

• New maintainers: Rob Dennis and Eli Courtwright

• New home on github

2009/10/25 - Version 1.0.1

• BUGFIX: Fixed compatibility with Python 2.3.

2009/04/13 - Version 1.0.0

• BUGFIX: can now handle multiline strings.

• Addition of ‘force_list’ validation option.

As the API is stable and there are no known bugs or outstanding feature requests I am marking this 1.0.

2008/02/24 - Version 0.3.2

BUGFIX: Handling of None as default value fixed.

2008/02/05 - Version 0.3.1

BUGFIX: Unicode checks no longer broken.

2008/02/05 - Version 0.3.0

Improved performance with a parse cache.

New get_default_value method. Given a check it returns the default value (converted to the correct type) or
raises a KeyError if the check doesn’t specify a default.

Added ‘tuple’ check and corresponding ‘is_tuple’ function (which always returns a tuple).

BUGFIX: A quoted ‘None’ as a default value is no longer treated as None, but as the string ‘None’.

BUGFIX: We weren’t unquoting keyword arguments of length two, so an empty string didn’t work as a default.

BUGFIX: Strings no longer pass the ‘is_list’ check. Additionally, the list checks always return lists.

A couple of documentation bug fixes.

Removed CHANGELOG from module.

2007/02/04 Version 0.2.3

Release of 0.2.3

58 Chapter 2. Validation Schema with validate.py

configobj Documentation, Release 5.0.6

2006/12/17 Version 0.2.3-alpha1

By Nicola Larosa

Fixed validate doc to talk of boolean instead of bool; changed the is_bool function to is_boolean (Source-
forge bug #1531525).

2006/04/29 Version 0.2.2

Addressed bug where a string would pass the is_list test. (Thanks to Konrad Wojas.)

2005/12/16 Version 0.2.1

Fixed bug so we can handle keyword argument values with commas.

We now use a list constructor for passing list values to keyword arguments (including default):

default=list("val", "val", "val")

Added the _test test.

Moved a function call outside a try. . . except block.

2005/08/18 Version 0.2.0

Updated by Michael Foord and Nicola Larosa

Does type conversion as well.

2005/02/01 Version 0.1.0

Initial version developed by Michael Foord and Mark Andrews.

2.1. Using the Validator class 59

configobj Documentation, Release 5.0.6

60 Chapter 2. Validation Schema with validate.py

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

61

	Reading and Writing Config Files
	Validation Schema with validate.py
	Indices and tables

